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Module 4: Lotka-Volterra Internal Competition Model
Executive Summary

Overview

We derived the governing system for and created a model of the compartment interactions in a
Lotka-Volterra predator-prey model that includes internal competition death rates.

—
Assumptions

To create our governing system of equations, we first start with our assumptions. Unlike the
in-class exercise, we introduce internal competition death rates, where the death rate of a
population is proportional to its own size. The complete assumptions are are as follows:

(a) The per capita prey birth rate remains constant.
(b) The per capita prey natural death rate remains constant.
(c) The per capita prey death rate due to internal competition depends linearly on the size

of the prey population.
(d) The per capita prey death rate due to predation depends linearly on the predator

population.
(e) The per capita predator birth rate depends linearly on the availability of prey.
(f) The per capita predator natural death rate remains constant.
(g) The per capita predator death rate due to internal competition depends linearly on the

size of the predator population.

—
Governing System

For each of our assumptions, we can define a respective positive constant of proportionality
(where all are proportional to the size of the population).

(a) Prey birth rate: 1α
(b) Prey natural death rate: 2α
(c) Prey competition death rate: β𝑥(𝑡)
(d) Prey predation death rate: γ𝑦(𝑡)
(e) Predator birth rate: δ𝑥(𝑡)
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(f) Predator natural death rate: σ
(g) Predator competition death rate: ε𝑦(𝑡)

For the sake of simplicity, we can define a net growth rate for the prey population, 1 2.α = 𝑎 − α
We can use these to write a system of differential equations, where is the size of the prey𝑥(𝑡)
population at time , and is the size of the prey population at time :𝑡 𝑦(𝑡) 𝑡

𝑥'(𝑡) = α𝑥(𝑡) − β𝑥(𝑡)2 − γ𝑦(𝑡)𝑥(𝑡)

𝑦'(𝑡) = δ𝑥(𝑡)𝑦(𝑡) − σ𝑦(𝑡) − ε𝑦(𝑡)2

Then we can simplify to create our standard-form governing system:

𝑥'(𝑡) = α𝑥(𝑡) 1 − β
α 𝑥(𝑡) − γ

α 𝑦(𝑡)⎡⎣ ⎤⎦

𝑦'(𝑡) =  − σ𝑦(𝑡) 1 − δ
σ 𝑥(𝑡) + ε

σ 𝑦(𝑡)⎡⎣ ⎤⎦

—
Equilibrium Points

Let be the prey and predator population sizes at the equilibrium point(s). First, we look at𝑋, 𝑌
the prey population. To have equilibrium in the prey population, we set the change in
population size, , to :𝑥'(𝑡) 0

0 = α𝑋 1 − β
α 𝑋 − γ

α 𝑌⎡⎣ ⎤⎦

So we get or . So we get three solutions, the first of which is trivial:α𝑋 = 0 1 − β
α 𝑋 − γ

α 𝑌 = 0

(𝑋, 𝑌) = (0, 𝑎𝑛𝑦) A

(𝑋, 𝑌) = ( α
β , 0) B

β𝑋 + γ𝑌 = α C

Then we can look at the predator population, also setting the change in size to :0

0 =  − σ𝑌 1 − δ
σ 𝑋 + ε

σ 𝑌⎡⎣ ⎤⎦

So we get or . So we have three solutions, the first being trivial, andσ𝑌 = 0 1 − δ
σ 𝑋 + ε

σ 𝑌 = 0

the second being realistically impossible (because all constants are defined as positive, it
implies negative population):

(𝑋, 𝑌) = (𝑎𝑛𝑦, 0) I

(𝑋, 𝑌) = (0, −σ
ε ) (invalid)

δ𝑋 − ε𝑌 = σ II
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So we get three overall equilibrium points:

(𝑋, 𝑌) = (0, 0) A I∩

(𝑋, 𝑌) = ( α
β , 0) B I∩

β𝑋 + γ𝑌 = α

δ𝑋 − ε𝑌 = σ
C II∩

We can rewrite the last system as the augmented matrix below and reduce:

β γ α
δ − ε σ

β γ α

0 − ε − γ δ
β σ − α δ

β

β 0 α −
γ σ−α δ

β( )
−ε−γ δ

β

0 − ε − γ δ
β σ − α δ

β

1 0 α−
γ σ−α δ

β( )
−ε−γ δ

β

β

0 1
σ−α δ

β

−ε−γ δ
β

When we simplify the fractions, we get the final equilibrium point:

(𝑋, 𝑌) = αε+σγ
βε+δγ , αδ−σβ

εβ+γδ( )

—
Equilibrium Volatility from the Jacobian

We set up the Jacobian for each equilibrium point to determine whether they are attractors or
repellers. Keep in mind that all proportionality constants were defined as positive, so their
negations are correspondingly negative.

We let the vector .𝑧 = 𝑥(𝑡), 𝑦(𝑡)[ ]
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Then we let the function be our system:𝑓(𝑧)

𝑓
1
(𝑧) = α𝑧

1
− β𝑧

1
2 − γ𝑧

2
𝑧

1

𝑓
2
(𝑧) = δ𝑧

1
𝑧

2
− σ𝑧

2
− ε𝑧

2
2

Then the Jacobian is as follows:

𝐽 𝑓(𝑧)( ) =

∂
∂𝑧

1
𝑓

1
(𝑧) ∂

∂𝑧
2

𝑓
1
(𝑧)

∂
∂𝑧

1
𝑓

2
(𝑧) ∂

∂𝑧
2

𝑓
2
(𝑧)

=
α − 2β𝑧

1
− γ𝑧

2
− γ𝑧

1

δ𝑧
2

δ𝑧
1

− σ − 2ε𝑧
2

Evaluating the Jacobian at each of our solutions, we get:

Solution 1: (𝑋, 𝑌) = (0, 0)

𝐽 𝑓(𝑧)( ) =
α 0
0 − σ

Because the matrix is diagonal, the eigenvalues are and . There is at least one positiveα − σ
eigenvalue, which means that this solution is unstable and therefore a repeller.

Solution 2: (𝑋, 𝑌) = ( α
β , 0)

𝐽 𝑓(𝑧)( ) =
α − 2β α

β − α
β

0 δ α
β − σ

Because the matrix is upper triangular, the eigenvalues are the diagonal: , .α − 2α δα/β − σ
These values can be positive or negative based on particular parameter values, and the
solution can therefore be stable or unstable.

Solution 3: (𝑋, 𝑌) = αε+σγ
βε+δγ , αδ−σβ

εβ+γδ( )

𝐽 𝑓(𝑧)( ) =
α − 2β αε+σγ

βε+δγ − γ αδ−σβ
εβ+γδ − γ αε+σγ

βε+δγ

δ αδ−σβ
εβ+γδ δ αε+σγ

βε+δγ − σ − 2ε αδ−σβ
εβ+γδ

Plugging into MATLAB, we get that the matrix eigenvalues are:

− αβε+α�ε−βεσ+βσ𝛾− α²β²ε²−2α²β�ε²+α²�²ε²−4α²�²ε𝛾+2αβ²ε²σ+2αβ²εσ𝛾−2αβ�ε²σ+2αβ�εσ𝛾−4α�²σ𝛾²+β²ε²σ²+2β²εσ²𝛾+β²σ²𝛾²+4β�σ²𝛾²
2(βε+�𝛾)

− ⍺βε+⍺𝛿ε−βεσ+βσ𝛾+ ⍺²β²ε²−2⍺²β𝛿ε²+⍺²𝛿²ε²−4⍺²𝛿²ε𝛾+2⍺β²ε²σ+2⍺β²εσ𝛾−2⍺β𝛿ε²σ+2⍺β𝛿εσ𝛾−4⍺𝛿²σ𝛾²+β²ε²σ²+2β²εσ²𝛾+β²σ²𝛾²+4β𝛿σ²𝛾²
2(βε+𝛿𝛾)
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We can rewrite, for simplicity, as . Depending on if , , and are negative, we get− 𝑎± 𝑏
2𝑐 𝑎 𝑏 𝑐

different positive and negative eigenvalues. Thus this Jacobian, like the second solution, is
inconclusive.

—
Modeling the Solutions

We implemented these solutions in MATLAB to model the timeline of each equilibrium point,
using artificial tested values for the parameters.

% parameters
alpha = 10; % prey growth rate per capita
beta = .01; % prey competition death rate per capita
gamma = .000001; % prey predation death rate per capita per predator
delta = .05; % predator birth rate per capita per prey
sigma = .2; % predator natural death rate per capita
epsilon = .5; % predator competition rate per capita

% system of equations
func = @(t,U) [alpha*U(1) - beta*(U(1)^2) - gamma*U(2)*U(1); ...

delta*U(1)*U(2) - sigma*U(2) - epsilon*(U(2)^2)];

% solve Lotka-Volterra system numerically
[t,U] = ode45(func,[0,1000],U0);

Solution 1: (𝑋, 𝑌) = (0, 0)

X_eq = 0; Y_eq = 0; U0 = [10, 2];

As we previously determined, this solution is a repeller.
Starting with near-zero predator and prey populations
causes dramatic increase and both before stabilizing.
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Solution 2: (𝑋, 𝑌) = ( α
β , 0)

X_eq = alpha/beta; Y_eq = 0; U0 = [0.9*X_eq, 2];

Starting near this equilibrium point, the prey and
predator populations move away and later stabilize at
Solution 3. So Solution 2 is a repeller.

Solution 3: (𝑋, 𝑌) = αε+σγ
βε+δγ , αδ−σβ

εβ+γδ( )
X_eq = (alpha*epsilon + sigma*gamma) / (beta*epsilon +
delta*gamma); Y_eq = (alpha*delta - sigma*beta) /
(beta*epsilon + delta*gamma); U0 = [0.9*X_eq, 1.25*Y_eq];

Starting near this equilibrium point, the predator and
prey populations both move towards the equilibrium
point and stabilize. So Solution 3 is an attractor.
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—
Conclusion

We created a system of equations to model the interactions between predator and prey
populations including death rates due to internal competition. We determined that there are
three equilibrium points in this system: the repeller , the𝑋 = 𝑝𝑟𝑒𝑦,  𝑌 = 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟𝑠( ) (0, 0)

repeller , and the attractor . When graphed, starting at any nonzero( α
β , 0) αε+σγ

βε+δγ , αδ−σβ
εβ+γδ( )

populations leads to the attractor equilibrium point—as expected.

Unlike the model we created in class, this more complex model does have an attractor. As a
result, the new timeline models are much less exciting than the one we saw in class: the
attractor stabilizes both populations relatively quickly.


